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Background 
For the 2012 assessment cycle, the Groundfish Plan Teams appointed a number of working 
groups.  General terms of reference for the working groups were as follow: 

“Working groups are tasked with developing/collating and analyzing alternative 
policies/approaches for their respective topic. Analyses can be either quantitative or 
qualitative (i.e., listing likely pros and cons). Ideally, the working group reports will be 
substantial enough that the Teams can use them to make informed policy 
recommendations, which will then be forwarded to the SSC for comment.” 

In 2012 the SSC reviewed the first version of the draft and had the following comments: 

"The SSC encourages authors or the GPT to document the Kalman filter (KF) and 
random effects (RE) models that were proposed for use in assessments. The inclusion of 
equations describing the models can help reviewers identify the structure of errors in the 
observation and state equations. Identification of over-parameterization in the KF 
approach is very difficult, so the authors should check whether they have sufficient 
replicates and data for their proposed model. 

"The Discussion section of the report could be strengthened to include a more general 
discussion of the advantages and disadvantages of the alternative weighting methods, so 
that the recommendations do not appear to depend so strongly on a single simulation 
study. For example, it is worth noting that in general, bias will increase with increasing 
weight given to past observations when there is a trend in the data, and that this is a 
particularly undesirable property of the equal-weighting methods. Precision, on the other 
hand, will generally improve as more data are included. The KF essentially balances 
bias and precision, leading to estimates that are both more precise than using a 
single survey, but generally have relatively little bias compared to more naive weighting 
methods. In addition, the KF approach can model process errors, measurement errors 
and random effects into one likelihood that is free of high dimensional integrals. The RE 
models usually help the authors to understand the correlation of two random effects and 
the prediction ability of RE models is the same as the fixed effects models. 

With these comments in mind, this report describes the working group activities to date. The 
work was conducted by Jim Ianelli, Paul Spencer, Grant Thompson, and Jon Heifetz.  Specific 
topics assigned to the group included the following: 

1. Methods for using survey time series to produce a “reliable” estimate of biomass for 
stocks/complexes managed under Tier 5, including an inventory of methods presently in 
use. 

2. Methods for using survey time series to apportion ABC among areas.  
3. Methods for filling in unsurveyed areas during years when survey funding was 

unavailable. For example, this applies to the groundfish bottom trawl survey in the GOA, 
and some periods for the sablefish longline survey (e.g., where the eastern Aleutian area 
is surveyed in alternate years with EBS slope areas). 



  

The working group focused on topics #1 and #2. Further work on topic #2 is needed and work on 
topic #3 was initiated based on an extension of topic #1.  In 2013 the simulations were updated 
and most notably some refinements and new methods were introduced as described below.   

Simulation modeling 
Two simulation models were developed in order to generate data sets for testing various methods 
for obtaining reliable biomass estimates and subarea proportions from survey time series. First, a 
single-area model was developed to evaluate estimation of biomass.  Operational models were 
developed for “Pacific ocean perch” (POP) and “walleye pollock” life-history patterns. The group 
considered the following variables in conducting the simulations: coefficient of variation (CV) of 
survey biomass estimates, survey frequency/data availability, stock longevity/productivity, trend 
in fishing mortality/biomass, and recruitment variability.  The single-area model simulations used 
the following parameter settings: 

Survey CV:   
This was approximated by the σ parameter of a lognormal distribution, and values of 0.15 
and 0.35 were used. 

Natural mortality (M):  
Set to 0.06 and 0.30 for the POP and walleye pollock life history types, respectively.  

Recruitment variability (σR):  
Evaluated at 0.8 and 0.4. 

Survey frequency:  
We considered annual, biannual, and triannual survey schedules. 

Trend in fishing rate/biomass:   
Cyclic trends in biomass were produced by varying the fishing rate over time.  Three 
patterns were evaluated:  

1) The fishing rate was specified to increase over the first half of the time series then 
decrease: Fspr changes from F100% to F20%, then from F20% to F100%;  

2) The fishing rate was specified decrease over the first half of the time series, then 
increase: Fspr changes from F20% to F100%, then from F100% to F20%; and  

3) The fishing rate was held constant: Fspr set to F50% for the entire period.  

For these three fishing mortality patterns the final portion of the simulation period (which 
affects the management control rule) biomass trends were increasing, decreasing, and 
flat, respectively. 

The variables above result in 36 permutations for each life history type.  For each permutation, 
100 simulations of 54 years were conducted (this ensured that the end year had a survey for each 
of the three survey frequencies). 

Actual trawl surveys produce estimates of both the survey biomass and the variance of the 
estimated survey biomass. In the simulations, the survey biomass estimates and their variances 
were treated as random variables based on the samples observed in a particular survey. Simulated 
estimates of the variance in survey biomass were assumed to have a lognormal distribution with 
the mean set to the “true variance” and standard deviation of 0.15.  

Simulations with movement 
The work on simulation models with movement is unchanged since the 2012 draft. For analysis 
of estimation of area proportions, the single-area model was expanded to a three-area model, with 
the areas organized in a linear pattern (as along a coastline or island chain). At each time step, the 



  

total number of recruits was obtained from a Beverton-Holt recruitment function applied to the 
total level of spawning stock biomass.  The total predicted recruits were distributed with 40% to 
the central area and 30% to each of the other two areas.  Recruitment variability was then added 
to the predicted recruits in each subarea, and this variability incorporated global variability 
(identical for all subareas) and local variability (separate for each subarea).  The variability was 
modeled with lognormal distributions, with the global values of σ evaluated at 0.8 and 0.4, and 
the local values of σ were set to one half the global value. 

Adults were allowed to move between areas. The proportion of adults moving from a subarea was 
modeled as function of age with a logistic function. Two levels for maximum proportion of fish 
(by age) moving were used (0.1 and 0.3).  The age at which the movement rate reached 50% of 
maximum was set to age 3 for pollock and age 8 for POP; these ages roughly correspond to the 
age at 50% maturity.   

In the multiple-area model, estimates of survey biomass are modeled for each subarea. Because of 
this finer scale of resolution, the subarea survey CVs were increased from those used in the single 
area model. Values of 0.25 and 0.6 were evaluated.   

Evaluation of the two values of maximum proportion of adult movement increased the number of 
permutations for each life-history type to 72.  As with the single-area model, 100 simulations of 
54 years were conducted for each permutation. 

Finally, the trend in fishing biomass for the simulation with movement used monotonic patterns 
in F over the simulated time period: 1) an increasing biomass trend (Fspr changes from F20% to 
F100% over the simulation); 2) a decreasing biomass trend (Fspr changes from F100% to F20% over 
the simulation); and 3) a constant trend (Fspr held at F50% over the simulation).    

Estimation methods  
The first task completed was an inventory of methods currently used for averaging survey 
estimates for stock assessment and ABC considerations for the BSAI and GOA (Table 1).  The 
totals shown in Table 1 are broken down by region and stock/complex in Table 2.  These tables 
illustrate the variety of methods presently in use and also provided guidance on a range of 
methods to evaluate against the simulated data: 

1. The most recent survey estimate 
2. Simple recent N survey average (e.g., N= 3, 4) 
3. Exponential weighting (EW) with weights increasing for more recent surveys 
4. Simple random effects (RE) model, with trend assumed to be zero (i.e., random walk).  

Note that the simple random effects model is the same as a Kalman filter if the transition 
and observation equations are linear and the process and observation errors are 
uncorrelated and normally distributed.   

In the BSAI, methods for obtaining biomass for Tier 5 stocks include all of the methods listed 
above, with a simple average and the most recent survey biomass estimate being the most 
common. For GOA Tier 5 stocks, a simple average was the most common method, being used in 
7 of 11 cases.  In the BSAI, area apportionments are used in six cases, of which 4 use a weighted 
average.  In contrast, area proportions were used in 19 cases in the GOA, with the most common 
methods being weighted average (7 cases) and most recent survey (7 cases).  

The following methods applied to the simulated survey data, and were motivated by methods 
currently used. 

1) Exponential smoothing 
2) Simple Kalman filter (random walk with observation error) 
3) Simple random effects model (random walk with observation error) 



  

4) A generalized ARIMA modeling method (Stockhausen and Fogarty 2007). 

The exponential smoothing model can be expressed as 
( ) 2

1 2 3ˆ ˆ (1) ( ) 1 (1 ) (1 )t t t t t tx y y y y yα α α α α α α− − − = = + − + − + − +   

with α is an exponential smoothing parameter, y is the survey biomass, and x is the underlying 
“true” survey biomass (i.e., without observation error). The exponential smoothing parameter is a 
function of the ratio of observation over process error variances. For random walk models with 
constant variances exponential smoothing can be shown as optimal for forecasting (Pennington 
1986). In this case, exponential smoothing corresponds to applying a Kalman filter or a simple 
ARIMA time series model (see below for a description of these methods), and either of these 
methods could be used to estimate the exponential smoothing parameter. Several of the currently 
used methods (i.e., taking the most recent survey estimate, and taking either weighted or 
unweighted averages survey estimates) correspond to particular values of the smoothing 
parameter, with the important distinction that exponential smoothing would be applied to the 
entire time series rather than the most recent points. A low exponential weight implies you give a 
low weight in the current biomass and relatively more weight to historical surveys (but with the 
weights still tapering for older surveys).       

The RE approach applied here partitions the variability due to underlying processes (i.e., changes 
in population “state” from one year to the next) from the observation errors due to sampling. The 
RE model will estimate high values for process errors when the population appears to fluctuate 
broadly and observations are highly precise.  In situations where observation errors are large, the 
ability to detect population fluctuations will decrease and the overall uncertainty may remain 
high.  

A description of the transition and observation equations used in the RE model follows: 
Notation: 0x is the true (log) survey biomass at time 0, and tx is the true (log) survey biomass at 
time t, pσ  is the process error standard deviation, ty is the observed (log) survey biomass at time 
t, and ,o tσ  is the standard error of the survey observation at time t.  Then, the transition and 
observation equations can be written as: 
 1 , 1t t p tx x ε− −= +  for t = 1, 2, … , n, where ( )2

, ~ 0,p t pNε σ  

 ,t t o ty x ε= +  for t = 1, 2, … , n, where ( )2
, ,~ 0,o t o tNε σ  

The RE model gives the marginal likelihood after all of the tx have been integrated out.  The two 
parameters estimated by maximizing the marginal likelihood are 0x  and pσ . The distributions of 

the tx  are given in closed form after running the Kalman "smoother," conditional on the point 
estimates of 0x  and pσ . The Kalman filter requires linear dynamics and Gaussian error 
distributions; lognormal error distributions can be used by using the natural log of survey biomass 
as the input data.      

As noted in the 2012 draft, an approximation to the Kalman Filter can be written as a random 
effects (RE) model where the process errors (step changes) from one year to the next are the 
random effects to be integrated over and the process error variance is a free parameter.  The 
observations can be irregularly spaced.  The box below shows the contents of a typical data file: 



  

 
The KF and RE-normal models are exactly the same in principle.  The only difference, in 
practice, is that the KF model integrates the joint likelihood (to obtain the marginal likelihood) 
exactly, by exploiting certain convenient properties of the linear-normal equations, whereas the 
RE model integrates the joint likelihood using a very accurate approximation, which allows it to 
move beyond the linear-normal case if desired. In Skaug and Fournier (2006; referenced in 
Fournier et al. 2012), the last paragraph on page 708 discusses a logistic growth model with 
linear-normal random effects and linear-normal error, and notes, “For this model the Laplace 
approximation is exact ( ijy is normally distributed).” The random effects model has the additional 
advantage of flexibility whereas the Kalman filter assumes normal error distributions and linear 
dynamics.    

The ARIMA (auto-regressive integrated moving average) model applied here can be expressed as 

1 1 1t t p t p t t q q t qy y yα α ε β ε β ε− − − −= + + +   
The structure of the ARIMA model is denoted “(p,d,q),” where p is the order of the 
autoregressive part, d is the number of times the data are differenced (for stationarity) and q refers 
to the order of the moving average process. For example, the random walk plus uncorrelated 
noise (RWPUN) model would be denoted ARIMA(0,1,1).  

The advantage of this approach is relaxation of the assumption that the underlying process is a 
random walk. Following Stockhausen and Fogarty (2007), the smoothing procedure was based on 
fitting generalized ARIMA models: 

1) Fit a series of candidate ARIMA models to survey data. 
2) Use model selection criteria to identify the best p,d,q ARIMA model. 
3) Estimate the power spectrum for the ARIMA process, which gives an estimate of the 

upper bound on the observation error variance (K*).  
4) From ARIMA parameters and K*, estimate smoothing weights to be used in a symmetric 

moving average. 

Conditions for applying generalized ARIMA smoothing: 
1) A time series long enough to get reliable parameter estimates (Stockhausen and Fogarty 

(2007) suggested 40 years) 
2)  Estimated Q  > (P+D) 
3)  Signal other than pure white noise  
4) Other (stationarity of autoregressive parameters, invertability, variance reduction) 

Our simulations occurred over 54 years and satisfy condition 1. Condition 2 results from fitting 
the generalized ARIMA model for the underlying “true” survey biomass being contained within 
ARIMA model for the observed time series. Condition 3 means that the smoothing must vary 
according to autocorrelation and moving average terms as distinguished from “white noise.” 
Failing this means that process and observation error variances are indistinguishable. The 

# Aleutian Islands Kamchatka flounder   
# Year range 
1991 2013      
#Number of observations 
8       
#Years of observations 
 1991  1994  1997  2000  2002  2004  2006  2010 
#Biomass estimates 
16255 49156 37664 28535 49035 39219 45369 53962 
#Std Errors of biomass estimates 
4458  18522  9588  6601 13634  9219 11058 20567 



  

generalized ARIMA approach of Stockhausen and Fogarty (2007) requires that these conditions 
be met and thus only worked on a subset of simulations. 

Statistics selected to evaluate the performance of the various methods include the mean relative 
error of biomass (relative error is defined here as estimate/true-1) and variability in these relative 
errors.   

Results 
Estimation of survey biomass 
For the pollock-like stock, the mean relative error (averaged across runs for each scenario) for a 
subset of the different simulation scenarios and estimation methods indicate that the RE model 
performs well in most cases but the absolute value of the bias for all methods was less than 5% in 
8 out of 12 scenarios (Table 3).  In a relative sense, the RE model performed worse for the case 
where Rσ  and surveyσ  was high and the biomass was increasing (fishing mortality was declining). 
Note that the direction of the bias was positive indicating that, as with the other methods, the RE 
model tended to “flatten out” the biomass trend.  The variability of the mean relative error for the 
pollock model was also relatively low for the RE model with the lowest variability in 8 out of 12 
cases (Table 4). 

For the rockfish-like simulations were slightly less favorable for the RE model but the differences 
between estimation methods were similar when the mean absolute relative error was greater than 
5% (which occurred in 4 out of 12 cases for the subset shown in Table 5). In 6 of the 12 
simulation scenarios presented the RE model had the lowest variability (Table 6).    

For the generalized ARIMA model, the “good” cases were mostly random walks. Cases which 
failed the conditions were from several reasons most commonly that they were categorized as 
being “white noise only.”  They also failed in some cases because the model structure did not 
meet the requirement of the moving average order (Q) being at least as large as the sum of the 
autoregressive order (P) plus the degree of differencing (D).  In other cases the variance of the 
smoothed estimates was greater than the original data (i.e., smoothing was unnecessary; Fig. 1). 
Runs producing white noise were more prevalent with the flat trajectory.   

When comparing the generalized ARIMA method with the other ARIMA (0,1,1) methods for 
rockfish-like scenarios (the subset being with surveys in every year since there was little 
difference in relative terms to the other approaches) the two methods were nearly equivalent.  The 
generalized ARIMA method shows a bit more variability, in part because it did "less" smoothing 
due to low estimates of the observation error variance (Fig. 2). The generalized ARIMA model 
performs about as well as the EW and RE models.  The random walk model (i.e., ARIMA 
(0,1,1)) described many of our datasets. For these cases, the three smoothing methods perform 
similarly. For a number of datasets, the generalized ARIMA smoothing failed to provide 
estimates. If the best ARIMA model is other than a (0,1,1), then the generalized ARIMA 
smoothing could reduce the bias but may increase the variance of the estimated error.  

Choosing the EW parameter a priori imposes a large probability of the resulting estimator being a 
poor one.  Estimating the optimal value of the exponential weighting parameter, and then 
applying it a posteriori, will likely result in a reasonably performing estimator (especially if the 
process is truly a random walk). As such, estimators with fixed weights will perform poorly 
(except when the fixed weight coincidentally matches the estimated weight). 

Discussion 
Webster (2011) conducted an evaluation (without simulations) using a Kalman filter approach 
with alternative models including the trendless random walk used here along with 3 other forms 
that allowed for underlying trends to be estimated.  He concluded that the trendless model 



  

performed adequately and, based on evaluations of halibut longline survey data from a variety of 
different areas, that a general historical weighting scheme was a suitable approximation to the 
results from the Kalman filter (with the 3-most recent surveys being weighted 70:25:5, with 70 
being the most recent).  The RE method applied here could be used to develop similar “rules of 
thumb” but this may likely vary by species.   

Under certain conditions, EW corresponds to a Kalman Filter, which can also be replicated with 
the RE model. The optimal vale of the EW parameter can be estimated (for example, with an 
ARIMA (0,1,1) model), but this process is at least as complicated as applying the RE model. 

One distinguishing feature between the RE and ARIMA models is that the RE model equates the 
observation error variance in each survey year with the sampling variance estimated by the RACE 
division for that year’s survey, while the ARIMA model estimates a single (i.e., time-invariant) 
observation error variance internally. It is unclear how best to interpret annual sampling variance 
estimates. On one hand, it could be argued that, if changes in estimated survey variance reflected 
changes in catchability or availability, then perhaps an average (i.e., constant) variance for survey 
observation errors would be inappropriate.  On the other hand, given that the state variable in the 
RE model is true survey biomass, changes in catchability or availability are part of process error, 
and it could be argued that accounting for such changes in the observation error variance would 
be better. 

Contrasting the generalized ARIMA approach with the other two approaches, if the best fitting 
ARIMA model is a random walk, then the three methods appear to give similar results.  If the 
best fitting ARIMA model is something other than a random walk, the generalized ARIMA 
smoothing procedure appears to favor "less" smoothing and produces estimates closer to the 
observed values. This could reduce the bias, but at the expense of increased variance. 

The generalized ARIMA smoothing fails to apply in all cases because it depends on having trends 
in the time series. Thus, from a pragmatic standpoint, methods which continue to function even 
when the data appear to have only “white noise” might be the best choice. Implementing the 
generalized ARIMA modeling and smoothing procedure also appears to present additional 
complexity and may be more challenging to make available for routine use.  

Reflecting on the tasks of 1) obtaining a “reliable” estimate of biomass for Tier 5 stocks, 
2) evaluating methods for using survey time series to apportion ABC among areas, and 
3) evaluating methods for covering unsurveyed areas we note that for Tier 5 stocks, the RE model 
could be used to address these topics simultaneously.  The RE model could be applied to each 
area separately which would enable calculation of apportionments and filling in for unsurveyed 
areas.  The overall ABC could then be based on the sums of the individual areas.   

To examine qualitatively how the RE model would apply results are provided for some selected 
Aleutian Islands stocks (Fig. 3). Note the interplay between the magnitude of the observation 
errors and that predicted by the model and how this can provide a way to naturally weight 
observations going forward. 

This model can also be applied to situations where there are missing regions in some years as is 
the case with the GOA.  Figures 4 and 5 show two stocks where the model is fit to each region 
independently, noting that the values for 2001 are missing due to lack of funding to complete a 
GOA-wide survey.  Given that the performance of the KF method tested well for individual time 
series, it may follow that applying it to regional time series to “fill in” missing years of data may 
be appropriate (and it should be feasible to compute uncertainties for application in P*-based 
ACLs). 



  

Future work 
The main purpose of obtaining a good estimate of current survey biomass is to use this estimate 
in the Tier 5 control rules.  Thus, another issue that should be investigated further is the 
uncertainty, or possible error, associated with these control rules.  In the case of OFL, the Tier 5 
control rule, as usually applied, gives:  OFLy+1 = M × By.  In order for this formula to be a good 
approximation of the one-year-ahead catch at F=FMSY, two conditions need to be met (or at least 
the degrees to which they are not met need to be offsetting): 

• The best estimate of M is good approximation for FMSY. 
• The best estimate of survey biomass in year y is a good approximation for mean 

exploitable biomass during year y+1 if the stock were exploited at F=M throughout year 
y+1. 

Focusing initially on the first condition, some of the literature suggests that the ratio of M to FMSY 
can easily diverge significantly from unity (e.g., Thompson, 1992, Fish. Bull. 90:552-560; 
Thompson, 1993, Fish. Bull. 91:718-731 (errata Fish. Bull. 92(3):iii)).  Recent analysis 
(unpublished) has tended to confirm this conclusion.  Even when central tendencies of population 
dynamic parameters are constrained to follow the M=FMSY rule of thumb, a modest amount of 
variability around those central tendencies can cause the rule to err significantly.  For example, 
when the “simple” model of Beverton and Holt (1957) is combined with a Beverton-Holt stock-
recruitment relationship (with a 60% coefficient of variation in recruitment), coefficients of 
variation on the order of 20% in the model parameters give a 95% confidence interval around the 
M/FMSY ratio extending from about 0.5 to 2.0. 

One difficulty in meeting the second condition is that the assumption of equivalence between 
survey biomass and exploitable biomass can break down easily, as was noted during this year’s 
CIE review of the Tier 5 groundfish assessments.  For example, fishery selectivity might not 
equal survey selectivity, and survey catchability might not equal unity. 

One recent development that may help to address both of the above problems, but which needs 
further testing, is the “survey/exploitation vector autoregressive” (SEVAR) model, which debuted 
this summer at the World Conference on Stock Assessment Methods. The only data requirements 
for the SEVAR model are time series of survey biomass (either relative or absolute) and total 
catch, with standard errors for both.  The ratio of total catch to survey biomass is used as the 
measure of exploitation.  After some rescaling, the state variables in the SEVAR model consist of 
true survey biomass and true exploitation rate, which are stacked in a vector.  The transition 
equation is linear and autoregressive with normal error, and the observation equation is also linear 
and normal.  For a model with p time lags, 4(p+1) parameters need to be estimated.  The choice 
of p can be based on Schwarz’s information criterion or similar statistic.  After rearranging some 
terms, the SEVAR model can be cast as a Kalman filter, meaning that the state variables are 
integrated out automatically, thereby improving accuracy of parameter estimates.  Two of the 
advantages of the SEVAR model are: 1) because survey biomass and exploitation rate covary in 
the model, the MSY exploitation rate can be estimated directly rather than assumed; and 2) 
because exploitation is defined with survey biomass as the denominator, projecting the harvest 
corresponding to the MSY exploitation rate for some future year involves projection of survey 
biomass only (not exploitable biomass), meaning that neither selectivity nor catchability appear 
as parameters in the model, and so do not need to be estimated.   

Only some of the methods used hear apply the “within survey variance” (year-specific estimates). 
It is unclear how best to interpret annual variance estimates. One suggestion is that if changes in 
estimated survey variance reflected changes in the catchability or availability, then perhaps an 



  

average constant CV for survey observation errors would be appropriate (as opposed to if the 
variability was just due to sampling). 

Area apportionment continues to be an important topic and will be the focus of extending this 
work in the coming year. 

Recommendations 
We recommend that the RE model be applied to obtain the “reliable biomass” estimate required 
for Tier 5 stocks and applied for the 2013 assessments.  Software is presently available from the 
working group. The following lists some advantages and disadvantages of this approach with 
respect to this model: 

Pros: 1) It is simple to apply. 2) It has a strong theoretical basis and requires minimal 
conditions for estimates to be available (e.g., if the pattern of data are indistinguishable 
from a “white-noise” only situation); 3) It performed well in the simulations; 
4) Application to actual data showed favorable characteristics for most species; 5) It 
likely will also be appropriate for computing apportionments. 6) It provides estimates of 
biomass variances which combine the process errors and observation errors (which may 
be useful for application to risk-averse ACL specifications). 7) It can provide insight on 
the loss of information as surveys become more or less infrequent.   

Cons: 1) other methods had better performance for some cases (e.g., for stocks that were 
increasing). 2) This method is more complex than applying simple mean (or weighted 
mean) values. 3) May perform poorly for stocks or stock complexes that are rarely 
observed (i.e., which may be absent from the surveys in some years). 4) as with the other 
methods evaluated here, estimates tend to be biased low for situations where the stock is 
increasing. 

 

References 
Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and 

J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical 
inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 
27:233-249. 

Skaug, H. J., & Fournier, D. (2006). Automatic approximation of the marginal likelihood in non-
Gaussian hierarchical models, Comput. Stat. Data Anal. 56 (2006), pp. 699–709. 

Stockhausen W. and W. Fogarty. 2007 Removing observational noise from time series data using 
ARIMA models. Fish. Bull. 107:88–101 (2007). 

Thompson, G. G. 1993. Management advice from a simple dynamic pool model. Fish. Bull. 
91:718-731  

Thompson, G. G. 1992. A Bayesian approach to management advice when stock-recruitment 
Parameters are uncertain. Fish. Bull. 90:552-56. 

Webster, R. 2010. Weighted averaging of recent survey indices. 
http://www.iphc.int/papers/SurveyWeighting_web.pdf 

http://tandfonline.com/doi/abs/10.1080/10556788.2011.597854�
http://tandfonline.com/doi/abs/10.1080/10556788.2011.597854�
http://tandfonline.com/doi/abs/10.1080/10556788.2011.597854�
http://tandfonline.com/doi/abs/10.1080/10556788.2011.597854�
http://www.iphc.int/papers/SurveyWeighting_web.pdf�


  

Tables 
Table 1. Summary of methods used for different stocks by tiers for the BSAI and GOA. 

Ber ing Sea Aleutian Islands  
      Tier: 1 2 3 4 5 6 

Number of stocks 3 0 12 0 7 3 
Biomass estimation method       

NA 3 
 

11 
  

3 
Average 

  
1 

 
3 

 Weighted average 
    

1 
 Kalman filter 

    
1 

 Most recent         2   
Proportion estimation method       

NA 3 
 

7 
 

6 3 
Average     1       

Weighted average 
  

4 
 

1 
  

Gulf of Alaska 
      Tier 1 2 3 4 5 6 

Number of stocks 0 0 9 2 11 5 
Biomass estimation method       

NA 
  

9 
  

5 
Average 

   
1 7 

 Most recent 
   

1 3 
 Mature biomass from model         1   

Proportion estimation method       
NA 

   
1 3 4 

Average 
  

2 
 

2 
 Weighted average 

  
4 1 2 

 Most recent 
  

3 
 

4 
 Proportion of historical catch           1 

 

 



  

Table 2. Inventory of methods used for different stocks which involved some form of survey 
averaging (unless otherwise specified). 

Area Stock Tier Biomass Area proportions 

BSAI  Pacific cod 3 
Scaled to BSAI  

using Kalman filter NA 

AK  Sablefish 3 NA 
5 year weighted average  

of survey and fishery indices 
BSAI  Greenland Turbot 3 NA Most recent three  
BSAI  POP 3 NA 4-6-9 weighting by subarea 
BSAI  Rougheye/BS  3 NA 4-6-9 weighting by subarea 
BSAI  Alaska skate 3 NA NA 
BSAI  Atka mackerel 3 NA 8-12-18-27 weighting  
BSAI  Kamchatka 5 7-year average NA 
Bogo Pollock 5 Most recent  NA 
BSAI  Other flatfish 5 Most recent NA 
BSAI  Shortraker  rockfish 5 Kalman filter NA 
BSAI  other rockfish 5 4-6-9 weighting  4-6-9 weighting 
BSAI  other skates 5 Most recent three NA 
BSAI  sculpins 5 Most recent three NA 
GOA pollock 3 NA 4 most recent average 
GOA Pacific cod 3 NA 3 most recent average 
GOA Arrowtooth 3 NA Most recent  
GOA flathead sole 3 NA Most recent 
GOA northern rockfish 3 NA 4-6-9 weighting 
GOA Pel. shelf rockfish (dusky) 3 NA 4-6-9 weighting 
GOA POP 3 NA 4-6-9 weighting 
GOA RE/BS rockfish 3 NA 4-6-9 weighting 
GOA Shallow flats N, S rock sole 3 NA Most recent  
GOA Demersal shelf  4 Most recent  NA 
GOA Other rockfish - sharpchin 4 Most recent three  4-6-9 weighting  
GOA Big skate 5 Most recent three Most recent three 
GOA deep flats Dover sole 5 most recent  Most recent (dover) 
GOA longnose skate 5 Most recent three Most recent three 
GOA Oher rockfish - other  5 Most recent three 4-6-9 weighting 
GOA Other skates 5 Most recent three NA 

GOA rex sole 5 
Mature biomass  

from model Most recent  
GOA Sculpins 5 Most recent four NA 
GOA shallow flats - others 5 Most recent  Most recent  
GOA Sharks - spiny dogfish 5 Most recent three NA 
GOA shortraker rockfish 5 Most recent three 4-6-9 weighting 
GOA Thornyhead 5 Most recent  Most recent  
GOA Atka mackerel 6 NA NA 

GOA deep flats others 6 NA 
Proportion of  

historical catch  
GOA octopus 6 NA NA 
GOA Sharks - others 6 NA NA 
GOA squids 6 NA NA 
 



  

Table 3. Subset of results showing the mean relative biomass error for combined areas 
“pollock” like simulations comparing weighted average methods based on 100 
simulations for each row. Other simulation cases with variable survey frequencies 
revealed a similar pattern. 

    
Mean Relative Biomass Error 

 Factors Method 
 

F trend Rσ  surveyσ  Survey 
frequency 

Generalized 
ARIMA model 

Random Effects  
Model (RE) 

Exponential 
weighting (EW) 

Percentage  
White noise 

up/down 0.8 0.15 1 0.334 0.234 0.273 0 
up/down 0.4 0.15 1 0.222 0.205 0.231 0 
up/down 0.8 0.35 1 0.051 0.104 0.060 0 
up/down 0.4 0.35 1 0.016 0.061 0.023 0 
down/up 0.8 0.15 1 -0.023 -0.030 -0.009 0 
down/up 0.4 0.15 1 0.007 -0.031 -0.009 0 
down/up 0.8 0.35 1 -0.025 -0.066 -0.005 1 
down/up 0.4 0.35 1 -0.010 -0.065 -0.004 0 

flat 0.8 0.15 1 0.033 0.012 0.027 16 
flat 0.4 0.15 1 0.024 0.018 0.016 52 
flat 0.8 0.35 1 0.058 -0.021 0.028 57 
flat 0.4 0.35 1 0.040 0.039 0.056 66 

 

Table 4. Subset of results showing the standard deviation of relative biomass error for 
combined areas “pollock” like simulations comparing weighted average methods 
based on 100 simulations for each row. Other simulation cases with variable survey 
frequencies revealed a similar pattern. 

    
Standard Deviation Relative Biomass error 

Factors Method 

F trend Rσ  surveyσ  Survey 
frequency 

Generalized 
ARIMA model 

Random Effects  
Model (RE) 

Exponential 
weighting (EW) 

up/down 0.8 0.15 1 0.388 0.295 0.349 
up/down 0.4 0.15 1 0.292 0.200 0.272 
up/down 0.8 0.35 1 0.111 0.094 0.132 
up/down 0.4 0.35 1 0.166 0.126 0.152 
down/up 0.8 0.15 1 0.133 0.117 0.136 
down/up 0.4 0.15 1 0.082 0.104 0.111 
down/up 0.8 0.35 1 0.221 0.207 0.231 
down/up 0.4 0.35 1 0.195 0.194 0.190 

flat 0.8 0.15 1 0.131 0.136 0.137 
flat 0.4 0.15 1 0.114 0.105 0.116 
flat 0.8 0.35 1 0.210 0.214 0.210 
flat 0.4 0.35 1 0.175 0.173 0.247 

 



  

Table 5. Subset of results showing the mean relative biomass error for combined areas 
“rockfish” like simulations comparing weighted average methods based on 100 
simulations for each row. Other simulation cases with variable survey frequencies 
revealed a similar pattern. 

    
Mean Relative Biomass Error 

 Factors Method Percentage 

F trend Rσ  surveyσ  Survey 
frequency 

Generalized 
ARIMA model 

Random Effects  
Model (RE) 

Exponential 
weighting (EW) White noise 

up/down 0.8 0.15 1 0.024 0.056 0.037 0 
up/down 0.4 0.15 1 0.030 0.070 0.051 0 
up/down 0.8 0.35 1 0.103 0.085 0.105 0 
up/down 0.4 0.35 1 0.137 0.155 0.157 0 
down/up 0.8 0.15 1 -0.032 -0.036 -0.032 0 
down/up 0.4 0.15 1 -0.023 -0.031 -0.030 0 
down/up 0.8 0.35 1 -0.083 -0.082 -0.073 1 
down/up 0.4 0.35 1 -0.047 -0.070 -0.046 0 

flat 0.8 0.15 1 0.005 0.008 0.006 16 
flat 0.4 0.15 1 0.032 0.023 0.004 52 
flat 0.8 0.35 1 -0.008 0.048 0.051 57 
flat 0.4 0.35 1 0.022 0.030 0.094 66 

 

Table 6. Subset of results showing the standard deviation of relative biomass error for 
combined areas “rockfish” like simulations comparing weighted average methods 
based on 100 simulations for each row. Other simulation cases with variable survey 
frequencies revealed a similar pattern. 

    
Standard Deviation Relative Biomass error 

Factors Method 

F trend Rσ  surveyσ  
Survey 

frequency 
Generalized 

ARIMA model 
Random Effects  

Model (RE) 
Exponential 

weighting (EW) 
up/down 0.8 0.15 1 0.113 0.093 0.106 
up/down 0.4 0.15 1 0.121 0.083 0.100 
up/down 0.8 0.35 1 0.176 0.182 0.176 
up/down 0.4 0.35 1 0.189 0.204 0.170 
down/up 0.8 0.15 1 0.091 0.084 0.089 
down/up 0.4 0.15 1 0.102 0.096 0.091 
down/up 0.8 0.35 1 0.139 0.168 0.126 
down/up 0.4 0.35 1 0.156 0.166 0.146 

flat 0.8 0.15 1 0.083 0.081 0.084 
flat 0.4 0.15 1 0.088 0.066 0.097 
flat 0.8 0.35 1 0.160 0.176 0.204 
flat 0.4 0.35 1 0.247 0.143 0.359 

 

 



  

Figures 
 

 
Figure 1. Results of the generalized ARIMA model fitting showing rejected cases (in red) and 

acceptable models for smoothing for the rockfish-like (POP) simulations with surveys 
occurring in every year. The panels represent different underlying trends specified in 
the simulations. 

 



  

a) 

b) 

Figure 2. Results comparing bias when the best ARIMA model is (0,1,1) (i.e., a random walk, 
top panel a) and when the ARIMA fitting procedure indicated that the underlying 
model was different from a (0,1,1) process (lower panel, b). 



  

Kamchatka flounder 

 
Shortspine thornyheads 

 
Octopus (unidentified) 

 
Figure 3. Aleutian Islands survey biomass fits for the random-walk model for some selected 

stocks.  Shaded region represents + 2 standard deviations from biomass estimates and 
error bars on points represents survey (observation) errors. 



  

 
Figure 4. Gulf of Alaska survey biomass fits for the random-walk model for longnose skate 

showing how 2001 is missing in the eastern region (bottom panel).  Shaded region 
represents + 2 standard deviations from biomass estimates and error bars on points 
represents survey (observation) errors.  Note that the vertical scales differ between 
regions. 



  

 
Figure 5. Gulf of Alaska survey biomass fits for the random-walk model for the sculpin 

complex showing how 2001 is missing in the eastern region (bottom panel).  Shaded 
region represents + 2 standard deviations from biomass estimates and error bars on 
points represents survey (observation) errors. Note that the vertical scales differ 
between regions. 
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